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Short Summary: 24 
This study introduces Multi-Dimensional Environment (MDE) zoning to enhance maize 25 
resilience and improve stagnant yields in China amidst climate change. Utilizing 26 
comprehensive environmental and yield data, MDE zoning accurately identifies areas for 27 
targeted, climate-adaptive breeding. The tool provides a flexible framework for updates 28 
using annual variety testing and daily environmental data, optimizing production and 29 
resource allocation. 30 
 31 
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Dear Editors: 33 
 34 
Global maize yields are stagnating, with over 50% of China's growing areas experiencing 35 
yield plateaus (Gerber et al., 2024). Climate change significantly contributes to this 36 
stagnation (Rizzo et al., 2022; Tigchelaar et al., 2018). Current breeding efforts for 37 
climate-adapted maize are still in the early stages (Xiong et al., 2022). A major challenge 38 
is that existing agroecological zones (AEZs) was defined without considering evolving 39 
climatic variations essential for effective breeding (Table S1). Traditional AEZs in China, 40 
based on static environmental factors (Li, 2009), aid agricultural planning but are less 41 
effectively for guiding breeding practices. Instead, mega-environment (ME) concepts use 42 
yield data from multi-environment trials (MET) to identify genotype-by-environment 43 
interaction (G×E) patterns, offering better delineation of homogeneous zones (Yan et al., 44 
2023). However, MEs require labor-intensive MET experiments, complicating the process 45 
amid climate change. To address these challenges, we propose a new approach that 46 
combines high-resolution, daily-scale environmental data with muti-location, multi-year 47 
yield data from METs nationwide. This scalable tool, called multi-dimensional environment 48 
(MDE) zoning, segments large maize-growing areas into distinct environmental zones, 49 
enhancing breeding efficiency in changing climates.  50 
 51 
We defined MDE zones by identifying environmental variables affecting grain yield in 52 
national trials and grouping grid-level sites in China accordingly (Figure S1). We 53 
evaluated the tool’s performance by comparing the new MDE zones with traditional ones 54 
regarding geographical coverages and yield variations. We propose three strategies to 55 
leverage this tool to improve breeding efficiency and maximize future production. 56 
 57 
Define MDE zones 58 
We used a nationwide variety testing (NVT) dataset of 1,502 pre-commercial varieties 59 
tested across 2,781 trials from 2016 to 2021, covering nearly all climate types in China’s 60 
maize-growing regions (Figure S2-S3, Dataset S1). Trial environmental data included 61 
temperature, soil, humidity, radiation, and wind strength (Dataset S2). LASSO 62 
regressions identified three critical growth windows and 165 significant environmental 63 
variables influencing maize yield (Figures S4-S5, Tables S2-S3). The model performed 64 
well based on various evaluation metrics (Table S4). G×E was insignificant, expected 65 
given the broad geographical range of the NVT dataset, though it remains important at 66 
smaller scale (Figures S6). 67 
 68 
Using identified variables, we delineated MDE zones via clustering analysis and 69 
evaluated its robustness (Table S5). This analysis used a nationwide grid containing 70 
118,486 nodes, resulting in six noncontiguous zones representing distinct environments 71 
(Dataset S3, Figure 1A). Comparisons among MDE zones showed significant differences 72 
in key environmental factors (Figure S7). We examined how each environmental category 73 
shapes MDE zones independently and found that temperature, humidity, and radiation 74 
primarily influence delineation, while soil characteristics refine the resolution (Figure S8). 75 
 76 
Performance of MDE zones 77 
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We compared the geographical coverage of the six MDE zones with the six traditional 78 
AEZs (Figure 1A). MDE Zone 0 aligns with the Northern Zone but extends along the Hu 79 
line into southwest China. MDE Zone 1 overlaps with the Huang-Huai-Hai Zone and 80 
includes tropical areas. MDE Zone 2 primarily occupies central and southern China, 81 
largely corresponding to the Southern Zone. MDE Zone 3 is located in the low-altitude 82 
regions of northwest China and does not match any AEZs. MDE Zone 4 covers high-83 
altitude areas in the northwest, aligning with the Northwest Zone. Lastly, MDE Zone 5 84 
includes the high-altitude regions in the west, featuring Mount Everest and the Tibetan 85 
Plateau Zone.  86 
 87 
We compared yield performance of individual AEZs with their overlapping MDE zones to 88 
better understand their relationships (Figure 1B). Analyzing a county-level maize 89 
production (CMP) dataset from 1980 to 2015 revealed considerable yield variations 90 
among MDE zones overlapping a single AEZ (Dataset S4). For instance, the Northern 91 
AEZ overlaps with MDE Zones 0 and 3, where Zone 0 shows a continuous yield increase, 92 
while Zone 3 experiences a rapid increase followed by a plateau. The Southwestern AEZ 93 
overlaps with MDE Zones 0, 2, and 5, with Zone 5 exhibiting markedly different yield trend. 94 
These findings suggest that individual AEZs contain diverse environments, indicating that 95 
traditional AEZs may be less suitable for specific adaptation breeding.  96 
 97 
We analyzed production trends across the MDE zones with the CMP dataset. While all 98 
zones show increasing total production, growth rates vary (Figure S9A-B). We focused 99 
on average annual yields (Figure 1C). MDE Zones 3-5 exhibit two phases of yield 100 
increases: an initial rapid rise of 0.20 tonnes per hectare (t/ha) annually, followed by a 101 
slower increase of 0.07 t/ha. In contrast, Zones 0-2 show one single phase with lower 102 
growth rates, yielding less than 0.1 t/ha annually. We further examined annual yield 103 
increases of the tested varieties in NVT experiments (Figure 1D). Only Zone 3 shows a 104 
significant upward yield trend, though it has recently slowed. This increase is primarily 105 
attributed to new varieties, assuming consistent environmental conditions and 106 
management from 2016 to 2021, as supported by no significant yield differences for 107 
recognized varieties ZD958 and XY335 (Figure S9C-D). These results highlight variations 108 
in maize production trends among MDE zones in the CMP and NVT datasets.  109 
 110 
A mismatch exists between yield per unit area and planting area across MDE zones (Table 111 
S6). Higher-yielding zones generally have smaller planting areas. For instance, MDE 112 
Zone 0 represents 36.2% of the planting area but has a low average yield of 5.08 t/ha. 113 
Strategic shifts in breeding goals and crop distribution could enhance yields and boost 114 
national production without expanding cropland.  115 
 116 
New breeding strategies 117 
The first strategy of our zoning tool is to pinpoint representative testing sites by grouping 118 
locations within an MDE zone into subzones with more homogeneous environments. For 119 
MDE Zones 0, we identified five subzones (Figure 1E). Two subzones (Z0-a and Z0-b) 120 
yield nearly 5 t/ha, while the others yield less, indicating local environmental influences 121 
(Figure 1F). We then applied a spatial coverage optimization algorithm to select a cost-122 
effective set of testing sites that capture environmental variations among subzones. For 123 
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Zone 0, we recommended 58 representative sites, down from 281 in the 2020 NVT trials 124 
(Figure S10). Similarly, for Zone 1, we identified five subzones and 41 representative sites, 125 
reducing the original 140 sites (Figures S11-S12). This approach helps breeders and 126 
decision-makers redesign the testing network for improved effectiveness and broad 127 
coverage. 128 
 129 
The second strategy tailors breeding objectives for each MDE zone to address varying 130 
climate impacts on maize yields. Our analysis of the NVT dataset identified four key 131 
temperature-related factors: 2-meter air temperature, dew point temperature, 132 
precipitation, and thermal radiation (Figure 1G). Increased 2-meter air temperature boosts 133 
yields in Zones 0, 3, and 4, but negatively impacts Zones 1-2. Higher dew point 134 
temperature improves yields in Zones 0 and 2 while decreasing them in Zone 4. 135 
Precipitation positively affects yields in Zones 3-4, whereas higher thermal radiation 136 
harms yields in most zones. Zone 5 was excluded due to a smaller sample size. These 137 
findings highlight significant environmental variability across MDE zones, with further 138 
analysis revealing heterogenous yield impacts at the subzone scale (Figure S13). To 139 
guide climate-adapted breeding, we developed a model illustrating the non-linear 140 
relationship between rising temperatures and yield changes (Figure 1H). Zones 3-4 can 141 
increase yields with rising temperatures, while Zone 0 risks reduced yields as it nears 142 
upper limit. Zones 1-2 face significant yield risks from current temperature.  143 
 144 
The third strategy, variety migration, involves transferring varieties to new areas projected 145 
to share similar environmental conditions due to climate change. These varieties can be 146 
used as foundational breeding materials for new varieties. We projected future 147 
temperature trends using growing degree days (GDD) based on two socio-economic 148 
pathways (O’Neill et al., 2017). Our analysis shows that projected GDD accumulations 149 
consistently exceed historical s from 1995 to 2014, though the increase varies by zone. 150 
We established three migration routes based on GDD projections: from Zone 1 to 3, and 151 
from Zone 2 to 4 and 0, where historical GDD trends in existing zones align with future 152 
trends in the target zones (Figure 1I). These routes can inform future breeding practices 153 
and maize production. 154 
 155 
Discussion 156 
This research underscores the need to redefine target environments to boost maize 157 
production in China, where yields have only modestly increased over the past two 158 
decades. We developed the MDE zoning tool to capture environmental variations in 159 
maize-growing areas, along with three strategies to enhance production and resource 160 
allocation. The tool also provides a flexible framework for ongoing updates based on 161 
annual variety testing and daily-scale environmental data for more precise breeding.  162 
 163 
This study has several limitations. First, experiments are needed to validate the accuracy 164 
of MDE zones. Although analysis of MDE Zone 1 demonstrated that higher yield 165 
correlations within the zone (0.53 between North and South Zone 1) than between zones 166 
(0.45 and 0.38 with Out Zone 1) using a published dataset (Liu et al., 2021), additional 167 
validation is required (Figure S14). Second, we assume existing varieties can be 168 
relocated without constraints such as pest pressures or soil compatibility. Third, MDE 169 
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zoning relies on mathematical algorithms that can be improved with newer methods. 170 
Enhancement to the MDE zoning tool include incorporating extreme weather events and 171 
socio-economic factors. With diverse, high-quality data and rigorous testing, the MDE 172 
zoning framework can be effectively adapted for new areas.  173 
 174 
Data and code availability: 175 
Supplemental Methods. 176 
Supplemental Figures: S1-S14. 177 
Supplemental Tables: S1-S6. 178 
Supplemental Datasets: S1-S4. 179 
Supplemental Datasets can be obtained at Mendeley Data. The scripts used for data 180 
analysis can also be accessed at Mendeley Data 181 
(https://data.mendeley.com/datasets/vmd8xbyjbv/1). 182 
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Figure Legend 228 
 229 
Figure 1. China’s redefined agroecological zones for maize and implications for yield 230 
trends. (A) China’s agroecological zones (AEZs) and new multi-dimensional 231 
environmental (MDE) zones for maize. (B) Annual yield from 1980 to 2015 across AEZs 232 
and overlapping MDE zones, calculated at five-year interval. (C) Maize production trends 233 
across six MDE zones using the CMP dataset. (D) Yield gain trends across the six MDE 234 
zones using the NVT dataset. (E) Spatial distribution of five non-contiguous sub-zones 235 
within MDE Zone 0. (F) Annual yield distributions across the five sub-zones in MDE Zone 236 
0 from 1980 to 2015. Asterisks indicate statistical significance: *p˂0.05, **p˂0.01, 237 
***p˂0.001. (G) Heterogeneous effects of climate change factors on maize yields across 238 
six MDE zones, excluding Zone 5 due to small sample size. Examined factors: 2-meter 239 
air temperature (Air Temp.), dew point temperature (Dew Temp.), precipitation (Precip.), 240 
and thermal radiation (Thermal Rad.). Error bars indicate standard error at a 95% 241 
confidence interval. (H) Conceptual graph of the non-linear relationship between 242 
temperature and yield. (I) Accumulated growing degree days (GDD) under historical and 243 
future climate scenarios across six MDE zones, along with potential migration routes for 244 
varieties. The map of China adheres to the standard map GS(2024)0650. 245 
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